Contact Us

Thanks for visiting the website. If you want to get in touch you can reach me through Twitter or please fill out the form on the right.

         

123 Street Avenue, City Town, 99999

(123) 555-6789

email@address.com

 

You can set your address, phone number, email and site description in the settings tab.
Link to read me page with more information.

005A1520 copy.jpg

Blog

Filtering by Tag: EAGLE

"The impact of feedback and the hot halo on the rates of gas accretion on to galaxies" - Correa et al. (2018)

Alan Duffy

My former student, and now high flying postdoctoral researcher at Leiden University, Dr Camila Correa answered one of the basic questions in galaxy formation in this paper - how does gas get to the galaxy from the larger Universe? The simple answer is, it depends. Essentially the bigger you are the more gas you can pull in, until you get to something the size of our Milky Way, when the `accretion'  rate of material infalling then flattens out. This picture is complicated as the hot gas halo surrounding a galaxy is responsible for preventing new material from infalling as it shocks against the hot halo. The amount of the hot halo depends on the type of energetic events within a galaxy, be it exploding stars (supernovae) or accreting black holes (AGN). A beautiful bit of work that will inform theorists and observers for years to come!

Read More

"The formation of hot gaseous haloes around galaxies" - Correa et al. (2018)

Alan Duffy

My old student Camila Correa continues to revolutionise the basic fundamentals and assumed wisdom of galaxy formation. In particular she thoroughly explored the simple idea that infalling gas will shock against the other gas floating around the galaxy. In this paper, Camila used the EAGLE simulation series to explore the way in which exploding stars (supernovae) or feeding blackholes (AGN) impact that development of the hot halo. Essentially the supernovae ejects gas from the galaxy into nearby space, presenting a bigger target to infalling material, and hence makes the hot halo easier to form. The blackholes on the other are more energetic and eject material from the halo entirely, making it harder to form the hot halo in the first place. Overall, Camila showed that there was a critical halo mass above which the hot halo will form, around a half the size of the Milky Way at the present day.

Read More