Contact Us

Thanks for visiting the website. If you want to get in touch you can reach me through Twitter or please fill out the form on the right.

         

123 Street Avenue, City Town, 99999

(123) 555-6789

email@address.com

 

You can set your address, phone number, email and site description in the settings tab.
Link to read me page with more information.

005A1520 copy.jpg

Blog

Filtering by Category: Academic

"Dark-ages reionization and galaxy-formation simulation VI: The origins and fate of the highest known redshift galaxy" - Mutch et al. (2016b)

Alan Duffy

The recent discovery by Oesch et al. (2016) of a far-off galaxy seen just 400 million years after the Big Bang but already having accumulated a billion Sun's worth of stars was considered a bizarre object. Yet the simulated DRAGONS universe apparently contains several analogues as shown in this beautiful work by my colleague Dr Simon Mutch. We show that such a monstrously oversized baby galaxy is possible if it grows rapidly but consistently throughout time and not as a result of cannibalising neighbouring objects through galaxy mergers as is oft suspected.

Read More

International Mining and Resources Conference

Alan Duffy

An unusual opportunity came up to speak at the International Mining and Resources Conference housed at the Melbourne Convention and Exhibition Centre to explore the possibilities of spin off tech from our underground dark matter searches. I focussed on the science of SABRE, the possibilities of an X-ray like scan for gold in the mine around using Muon Tomography and other underground science such as understanding how life grows without radiation / astrobiology. Finally I discussed the possible future for mining, in space! Key technologies such as automation and refinement have been deployed by the giants in the resource extraction sector and could find a home for their advanced technologies in the final frontier.

Read More

"Dark-ages reionization and galaxy formation simulation V: morphology and statistical signatures of reionization" - Geil et al. (2016)

Alan Duffy

A key goal of the DRAGONS investigation was to predict how growing galaxies in the early universe would ionise the neutral hydrogen around them. This is the long-sought after signal of Reionisation (also known as Cosmic Dawn) when the Universe was filled with light, lifting this dark opaque fog. It is the target for telescopes like the Square Kilometre Array to characterise that early universe when ionised bubbles of gas around the galaxies resembles a swiss cheese model. This beautiful work by Dr Paul Geil calculated how our simulated galaxies would impact that material around them finding that the galaxy formation that resulted in the biggest impact was the nature of how stars exploded. This both ionised gas around it but more importantly limited how new stars could form and hence limit the amount of ionising radiation and therefore the size and number of the ionised bubbles. This is however not a unique signature and instead even when we find the swiss cheese universe we have a lot of work ahead to tease out its lessons. Depressing but beautifully analysed science by Paul.

Read More

"Dark-ages reionization and galaxy formation simulation III: Modelling galaxy formation and the epoch of reionization" - Mutch et al. (2016a)

Alan Duffy

A mammoth effort by my long-time collaborator Dr Simon Mutch explaining the semi-analytic model Meraxes that `paints' the galaxies onto the background dark matter structures formed in the huge simulated DRAGONS universe. This work has so many critical lessons on key physics that grows a galaxy that matches what we see in the distant universe (and hence seeing those objects as they were long ago when the light first left them). Perhaps the key is that the fraction of energetic light that can escape forming galaxies (and hence ionise the neutral hydrogen atoms in the vast distances between them) has to increase towards earlier times. Somehow galaxies trap evermore of this radiation as they grow up. A mystery that we will hopefully solve in this series of works!

Read More

"Dark-ages reionization and galaxy formation simulation - IV. UV luminosity functions of high-redshift galaxies" - Chuanwu et al. (2016)

Alan Duffy

The first paper by Chuanwu Liu in his PhD with DRAGONS showed that we can explain observations of distant galaxies glowing in ultraviolet (UV) light. This light is responsible for ionising the neutral hydrogen between the galaxies, ending the Cosmic Dark Ages in a process known as Reionisation. Chuanwu's work showed that our simulated galaxies can recreate the current observations, but that we can then predict what future observations may see as our simulations form much smaller objects at this time than even Hubble can find. The main finding was that dwarf galaxies are responsible for providing most of the ionising radiation that lights up the universe; in agreement with my entirely complimentary and independent technique in Duffy et al. (2014b). Promising start to your academic career Chuanwu with such a careful and expansive analysis on this hot topic! 

Read More

"Dark-ages Reionization and Galaxy formation simulation - I. The dynamical lives of high-redshift galaxies" - Poole et al. (2016)

Alan Duffy

The first paper in the DRAGONS series, by my long time collaborator Dr Greg Poole, explaining the enormous dark matter simulation Tiamat that underlines the entire project.  This is an epic work detailing the challenges involved in correctly identifying dark matter structures within which galaxies are expected to form. This is particularly challenging at early times in the universe's history when so many dark matter haloes were colliding and merging, causing a nightmare for basic book-keeping or cataloguing of such messy objects. Beautiful work and one that sets the stage for the rest of the DRAGONS papers! 

Read More

"Dark-ages reionization and galaxy formation simulation - II. Spin and concentration parameters for dark matter haloes during the epoch of reionization" - Angel et al. (2016)

Alan Duffy

The first paper by Paul Angel for his PhD as part of DRAGONS and it's enormous. A careful phenomenological study and characterisation of the structure of dark matter haloes in the early universe. In particular Paul focussed on the concentration of the dark matter haloes as measured by fitting the halo with the NFW and Einasto profiles. At the current age of the universe works such as Duffy et al. (2008) show small mass haloes are typical denser (that is more concentrated) that more massive ones. This is because smaller objects form earlier than large objects in our hierarchical universe, earlier times in an expanding universe implies that it was overall smaller and hence denser as are then the objects that form. Paul discovered that the universe in DRAGONS is so young that essentially everything is forming at nearly the same time and hence density so the concentration-mass relation is flat! 

Read More

"The Theoretical Astrophysical Observatory: Cloud-based Mock Galaxy Catalogs" - Bernyk et al. (2016)

Alan Duffy

TAO is an outrageously ambitious project spearheaded by Swinburne's Prof Darren Croton to bridge the gap between observations of our universe and those we simulate (such as the ones I create). Ideally astronomers log onto TAO and select their favourite telescope and strategy for viewing (stare for a long time at a small region, or briefly over a wide path of sky, the former lets you see fainter objects while the latter gives you only the brightest ones). Then you get an output that is identical in format to the one you took with that telescope in reality (including all known issues with signal to noise and interference etc). This makes the comparison between what we predict and observe as close as possible and hence maximise the lessons we can learn from seeing out into the universe.

Read More

DRAGONS unleashed!

Alan Duffy

DRAGONS is out! Our first six collaboration papers are on the arXiv and submitted to the journals. Can’t describe what a relief this is for myself and the team..! Led by U.Melb’s Professor Stuart Wyithe it's been a few hard years of science, simulating the first galaxies after the Big Bang and trying to figure out what these look like from telescopes on Earth, 13 billion years later (and 40 billion light years distant) but finally the results are in and they’re amazing. 

Read More

"The accretion history of dark matter haloes - III. A physical model for the concentration-mass relation" Correa et al. (2015c)

Alan Duffy

My student's third paper of a stunning 3-part series on the growth of dark matter structures. In this paper Camila finally demonstrated the long studied concentration of dark matter haloes was tied to the growth history of that halo and hence, through her other works, the basic cosmology of the universe. Reference: Correa, Wyithe, Schaye and Duffy 2015 MNRAS 452, 1217C

Read More

"The accretion history of dark matter haloes - II. The connections with the mass power spectrum and the density profile" Correa et al. (2015b)

Alan Duffy

My student's second paper of a stunning 3-part series on the growth of dark matter structures. In this paper Camila tied the distribution of dark matter in haloes (i.e. the density profile) and initial power spectrum of the universe. This used detailed N-body simulations that Camila herself ran several of on supercomputer. Reference: Correa, Wyithe, Schaye and Duffy 2015 MNRAS 450, 1521C

Read More

"The accretion history of dark matter haloes - I. The physical origin of the universal function" Correa et al. (2015a)

Alan Duffy

My student's first paper of her PhD was a stunning 3-part series on the growth of dark matter structures. In this paper Camila set up the analytic machinery that tied the mass accretion history of haloes to the underlying cosmology of the universe using linear structure formation theory. In particular she showed that the rapid exponential growth of haloes in the early universe slows to become a slower power law at late times thanks to Dark Energy. Reference: Correa, Wyithe, Schaye and Duffy 2015 MNRAS 450, 1514-1520

Read More

"Low-mass galaxy formation and the ionizing photon budget during reionization" Duffy et al. (2014b)

Alan Duffy

The first paper from the "DRAGONS" team led by Prof Stuart Wyithe, investigating how the First Galaxies formed. Using a series of hydrodynamical simulations series known as Smaug we show that the first billion years after the Big Bang is a very exciting time, with the entire universe lit by a hidden population of small galaxies that current telescopes have yet to see. Reference: Duffy, Wyithe, Mutch, Poole 2014 MNRAS 443, 3435D.

Read More

"Probing the nature of dark energy through galaxy redshift surveys with radio telescopes" Duffy (2014a)

Alan Duffy

In this paper, I analysed the ability of radio and optical (visible light) telescopes to probe the nature of Dark Energy. I showed that radio telescopes are rapidly improving in capability and although starting from a low base they will rival the best optical telescopes by the time of the Square Kilometre Array (SKA). One issue is that the SKA demands such a large supercomputer that Moore's law might not get us such a machine by the time SKA is built. Reference: Duffy 2014 Annalen der Physik 526, 283D for the Special Issue "The Accelerating Universe".

Read More

"Giant Radio Galaxies: I. Intergalactic Barometers" Malarecki et al. (2013)

Alan Duffy

In this paper, we present a fascinating technique using the outbursts of supermassive blackholes as barometers to measure the pressure of the gas around the galaxies, as the outbursts inflate 'bubbles' of ionised gas. These pressures were then compared with the hydrodynamical simulations and found to be significantly rarer, over-pressurised regions than normal. Reference: Malarecki, Staveley-Smith, Saripalli, Subrahmanyan, Jones, Duffy, Rioja 2013 MNRAS 432 200M.

Read More

"The impact of baryons on the spins and shapes of dark matter haloes" Bryan et al. (2013)

Alan Duffy

In this paper, Sarah and I started investigating the shape and spin properties of Dark Matter haloes just after I left Jodrell Bank. This then increased in scope when she started to consider the actions of the baryons (as featured in Duffy et al 2010) in changing these key properties of the collapsed Dark Matter structures. This work showed that the baryons strongly influence the halo, making it more spherical and rotating faster than the Dark Matter only predictions. This is a key result for Gravitational lensing and X-ray temperature mass estimates. Reference: Bryan, Kay, Duffy, Schaye, Dalla Vecchia, Booth 2013 MNRAS 429 3316B.

Read More

"Predictions for ASKAP neutral hydrogen surveys" Duffy et al. (2012c)

Alan Duffy

In this paper, we used one of the largest simulated universes in existence (the Millennium Simulation) we populated the Dark Matter haloes with detailed Neutral Hydrogen gas (which radio telescopes can detect). By 'observing' these objects with the expected performance of the Australian SKA Pathfinder telescope we created a series virtual surveys that ASKAP can be expected to detect. These catalogues are as detailed and real as we can hope to have until we turn the telescope on. Some incredible fly through movies and images are available (be warned they can be pretty large). Reference: Duffy, Meyer, Staveley-Smith et al 2012 MNRAS 426 3385D

Read More

"Cosmological Surveys with the Australian Square Kilometre Array Pathfinder" Duffy et al. (2012b)

Alan Duffy

This paper is our analysis of the ability of the forthcoming Australian Square Kilometre Array Pathfinder to investigate the nature of Dark Energy. It will likely be the first radio telescope to make these kind of observations and is an exciting precursor to the type of science that the full Square Kilometre Array (SKA) can accomplish. Reference: Duffy, Moss, Staveley-Smith 2012 PASA 29 202D

Read More